การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 3)

4.4) การหาปริมาณองค์ประกอบหลักทางเคมีของสารสกัดจากตัวอย่างใบชาเมี่ยงโดยใช้เทคนิคโคร               

            มาโทกราฟีของเหลวสมรรถนะสูง (High performance liquid chromatography, HPLC)
            งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมในการสกัดปริมาณสารสำคัญ คือ คาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยวิธีรีฟลักซ์ด้วยเครื่องไมโครเวฟ (Microwave-assisted extraction) และทำการหาสภาวะที่เหมาะสมในการสกัด คือ ชนิดของตัวทำละลาย อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย กำลังไฟฟ้าที่ใช้ในการสกัด (วัตต์) และ เวลาในการสกัด (นาที) จากนั้นนำสกัดที่ได้ไปวิเคราะห์หาปริมาณสารสำคัญด้วยเทคนิค HPLC
4.5) การหาสภาวะที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยกระบวนการสกัดแบบรีฟลัก (reflux) โดยใช้เครื่องไมโครเวฟ
           ในการหาสภาวะที่เหมาะสมในการสกัดสารสารคาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) ได้ทำการหาสภาวะที่เหมาะสมของตัวแปร ดังต่อไปนี้
-    ชนิดของตัวทำละลาย คือ เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O)
-    อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 g/mL
-    กำลังไฟฟ้าที่ใช้ในการสกัด คือ 70, 210, 350, 490 และ 630 วัตต์
-    เวลาในการสกัด (นาที) คือ 10, 15, 20, 25 และ 30 นาที 
    โดยขั้นตอนในการสกัดแสดงดังภาพที่ 144
1.1) การหาสภาวะที่เหมาะสมของชนิดของตัวทำละลาย
            นำตัวอย่างใบชาเมี่ยง 5.00xx กรัม มาสกัดโดยวิธีรีฟลักโดยใช้เครื่องไมโครเวฟ (Microwave-assisted extraction) ด้วยตัวทำละลายที่แตกต่างกัน คือ เมทานอล (MeOH), เอทานอล (EtOH), อะซีโตน (Acetone) และ น้ำ (H2O) ซึ่งใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย 1:30 (g/mL) โดยใช้กำลังไฟฟ้าในการสกัด คือ 280 วัตต์ เป็นเวลา 10 นาที ทำการกรองสารสกัดที่ได้ออกจากตัวอย่าง จากนั้นนำสารสกัดที่ได้ 2 mL มาเจือจางด้วยเอทานอลในขวดวัดปริมาตรขนาด 10 mL นำสารสกัดไปทำการกรองผ่านแผ่นเมมเบรนที่มีขนาดของรูพรุน 0.45 ไมโครเมตร ก่อนนำไปวิเคราะห์ด้วยเทคนิค HPLC แล้วนำผลการวิเคราะห์จากสารสกัดมาเทียบกับกราฟมาตรฐานเพื่อหาปริมาณสารสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชินที่มีอยู่ในตัวอย่างใบชาเมี่ยงเพื่อหาตัวทำละลายที่เหมาะสมที่สุดในการสกัดสารดังกล่าวเพื่อใช้ในการหาสภาวะต่อไป โดยขั้นตอนการสกัดแสดงดังภาพที่144
1.2) การหาสภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย    
            เพื่อหาสภาวะที่เหมาะสมอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่ใช้ในการสกัดสารคาเฟอีน  อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชาเมี่ยง โดยการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่แตกต่างกัน คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 (g/mL) โดยใช้ตัวทำละลายเอทานอลทำการสกัดเป็นระยะเวลา 10 นาที และ ใช้กำลังไฟฟ้า คือ 280 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144                                                                                                                                                                            1.3) การหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัด 
            เพื่อหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชิน ในการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:25 (g/mL) โดยใช้เวลาในการสกัด คือ 10 นาที แต่ใช้กำลังไฟฟ้าในการสกัดแตกต่างกันออกไป คือ 70, 210, 350, 490 และ 630 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144
1.4) การหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด
            เพื่อหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชาเมี่ยงโดยการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:25 (g/mL) ใช้กำลังไฟฟ้า คือ 350 วัตต์ แต่ใช้เวลาในการสกัดแตกต่างกันออกไป คือ 10, 15, 20, 25 และ 30 นาที โดยวิธีการสกัดแสดงดังภาพที่ 145

ภาพที่ 146 แผนภาพแสดงวิธีการสกัดสารสำคัญจากตัวอย่างใบชาเมี่ยง

 

4.6) การวิเคราะห์หาปริมาณคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG)และอิพิคาเทชิน (EC) ในตัวอย่างใบชาเมี่ยงโดยใช้เทคนิค Reverse phase-HPLC (RP-HPLC)
             นำสารสกัดตัวอย่างใบชาเมี่ยงที่ได้จากการสกัดโดยวิธี Microwave-assisted extraction มาวิเคราะห์หาปริมาณคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชิน ด้วยเทคนิค RP-HPLC ด้วยสภาวะที่เหมาะสมของเครื่อง HPLC ในการวิเคราะห์สารดังกล่าวแสดงดังต่อไปนี้
เครื่องไฮฟอร์แมนซ์ลิควิดโครมาโทรกราฟี รุ่น FLEXAR™ LC Systems, PerkinElmer
HPLC condition:
    คอลัมน์                               : Brownlee Analytical C18 column (PerkinElmer) ความยาว 25 เซนติเมตร เส้นผ่านศูนย์กลาง            ภายใน 4.60 มิลลิเมตร ความหนาของลิควิดเฟส 5.0 ไมโครเมตร
    เฟสเคลื่อนที่                        : (A) 0.1% กรดฟอสฟอริกในน้ำ (B) เมทานอล (C) อะซีโตไนไตรล์
    อัตราการไหล                       : 1 มิลลิลิตร/นาที
    อุณหภูมิส่วนฉีดสาร                : 35?C
    ตัวตรวจวัด                           : Photodiode array detector (PDA) ความยาวคลื่น 280 นาโมเมตร
    ปริมาณของสารตัวอย่างที่ฉีด    : 10 ไมโครลิตร
    สภาวะของการแยก        : Gradient elution
เวลา (นาที)    % เฟสเคลื่อนที่ชนิด A     % เฟสเคลื่อนที่ชนิด B     % ของเฟสเคลื่อนที่ชนิด C
       0                       95                               0                                    5
       2                       95                               0                                    5
       7                       85                              10                                   5
      17                      70                              15                                  15
      22                      60                              20                                  20
      27                       0                                0                                 100
      35                       0                                0                                 100

           การวิเคราะห์ปริมาณคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG)และอิพิคาเทชิน (EC) ด้วยเทคนิค RP-HPLC โดยเตรียมสารมาตรฐานคาเฟอีน อิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชิน ที่มีความเข้มข้นในช่วง 0.50-200 ไมโครกรัมต่อกรัม สำหรับสารมาตรฐานคาเฟอีนและ 0.50-100 ไมโครกรัม ต่อ กรัม สำหรับสารมาตรฐานอิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชิน จากนั้นนำไปวิเคราะห์ด้วยเทคนิค HPLC แล้วพลอตกราฟระหว่างพื้นที่ใต้พีคกับความเข้มข้นของสารมาตรฐานได้กราฟมาตรฐานเป็นเส้นตรงโดยมีค่าสัมประสิทธิ์เชิงเส้นตรงและมีสมการเชิงเส้นตรงเท่ากับ y=35690x-83000 (R² = 0.9994) สำหรับ CAF y=15109x-14908  (R² = 0.9993) สำหรับ EGCG และ y=7723.5x-1562.9 (R² = 0.9999) สำหรับ EC แสดงดังภาพที่ 146-148

ภาพที่ 147 กราฟมาตรฐานของสารมาตรฐานคาเฟอีน (CAF)

ภาพที่ 148 กราฟมาตรฐานของสารมาตรฐานอิพิแกลโลคาเทชินแกลเลต (EGCG)

ภาพที่ 149 กราฟมาตรฐานของสารมาตรฐานอิพิคาเทชิน (EC)


             RP-HPLC โครมาโทรแกรมที่ได้จากการวิเคราะห์สารมาตรฐานคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC)และสารสกัดที่ได้จากตัวอย่างใบชาเมี่ยงแสดงในภาพที่ 149 

ภาพที่ 150 RP-HPLC โครมาโทรแกรมที่ได้จากการวิเคราะห์สารมาตรฐานคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) (ก) และสารสกัดตัวอย่างใบชาเมี่ยง (ข)

5. ผลการวิเคราะห์ทางเคมี
5.1) ตัวทำละลายที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยง
            หาตัวทำละลายที่เหมาะสมในการสกัดสารสำคัญ 3 ชนิด คือ คาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยงโดยใช้ตัวทำละลายที่แตกต่างกันทั้งหมด 4 ชนิด คือ  เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) โดยผลการทดลองแสดงดังภาพที่ 150

ภาพที่ 151  อิทธิพลของตัวทำละลายชนิดต่างๆต่อปริมาณสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC)

            จากผลการทดลองจะเห็นได้ว่าที่ตัวทำละลายเมทานอลสามารถสกัดสาร CAF, EGCG และ EC ได้มากที่สุดและตัวทำละลายอะซีโตนสกัดสารทั้ง 3 ชนิดได้น้อยที่สุด แต่ตัวทำละลายเมทานอล เอทานอล และน้ำ สามารถสกัดสารสำคัญทั้ง 3 ชนิดนี้ได้ในปริมาณที่ใกล้เคียงกันมาก ซึ่งเมทานอลเป็นตัวทำละลายที่มีความเป็นพิษมากกว่าเมื่อเทียบกับเอทานอลและน้ำ ดังนั้น ในงานวิจัยนี้จึงเลือกตัวทำละลายเอทานอลในการสกัดตัวอย่าง ใบชาเมี่ยงและใช้ในการหาสภาวะที่เหมาะสมของการสกัดต่อไป
5.2) สภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล
            จากการสกัดหาปริมาณคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยงโดยทำการหาสภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 (g/mL) จากผลการทดลอง พบว่า ปริมาณ CAF, EGCG และ EC ที่ได้อยู่ในช่วง 11.16-12.41, 2.68-3.08 และ 2.73-3.42 mg/g ตามลำดับ (ภาพที่ 151) 

ภาพที่ 152 อิทธิพลของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอลในอัตราส่วนต่างๆ ต่อปริมาณสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC)


            จากผลการทดลองจะเห็นได้ว่าที่อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอลที่สามารถสกัดสาร CAF, EGCG และ EC ได้มากที่สุด คือ 1:25 (g/mL) มีปริมาณ CAF, EGCG และEC เท่ากับ 12.41, 3.08 และ 3.42 mg/g ตามลำดับ ดังนั้นจึงเลือกอัตราส่วนนี้เพื่อใช้ในการหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้สกัดต่อไป

5.3) สภาวะที่เหมาะสมของของกำลังไฟฟ้าที่ใช้ในการสกัด 
            จากการสกัดหาปริมาณ CAF, EGCG และ EC จากตัวอย่างใบชาเมี่ยงโดยทำการหาสภาวะที่เหมาะสมของกำลังไฟฟ้าของไมโครเวฟ คือ 70, 210, 350, 490 และ 630 วัตต์ จากผลการทดลอง พบว่า ปริมาณ CAF, EGCG และ EC ที่ได้อยู่ในช่วง 4.88-11.75,  1.24-2.67 และ 1.11-2.50 mg/g ตามลำดับ ดังภาพที่ 152

 
ภาพที่ 153 อิทธิพลของกำลังไฟฟ้าต่อปริมาณสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC)

           จากผลการทดลองจะเห็นได้ว่าปริมาณสาร CAF, EGCG และ EC จะมีปริมาณเพิ่มมากขึ้นเมื่อเพิ่มกำลังไฟฟ้าในการสกัดจาก 70 ถึง 350 วัตต์ และ ปริมาณ CAF, EGCG และ EC จะเริ่มคงที่เมื่อใช้กำลังไฟฟ้า 350 (CAF=11.61, EGCG=2.67, EC=2.50 mg/g) ถึง 630 วัตต์ (CAF=11.75, EGCG=2.69, EC=2.49 mg/g) ดังนั้นจึงเลือกกำลังไฟฟ้า 350 วัตต์ เพื่อใช้หาสภาวะที่เหมาะสมของเวลาที่ใช้ในสกัดต่อไป
5.4) สภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด
จากการสกัดหาปริมาณ CAF, EGCG และ EC จากตัวอย่างใบชาเมี่ยงโดยทำการหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด คือ 10, 15, 20, 25 และ 30 นาที จากผลการทดลอง พบว่า ปริมาณ CAF, EGCG และ EC ที่ได้อยู่ในช่วง 11.54-12.43,  2.34-2.92 และ 2.25-2.78 mg/g ตามลำดับ แสดงดังภาพที่ 153
 


ภาพที่ 154 อิทธิพลของเวลาที่ใช้ในการสกัดต่อปริมาณปริมาณสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC)

            จากผลการทดลองจะเห็นได้ว่าเวลาที่ใช้ในการสกัดสาร CAF, EGCG และ EC ได้มากที่สุด คือ 20 นาที ซึ่งมีปริมาณ CAF, EGCG และ EC เท่ากับ 12.43, 2.92 และ 2.78 mg/g ตามลำดับ ดังนั้นเวลาที่เหมาะสมที่สุดในการสกัดสารทั้ง 3 ชนิด คือ 20 นาที
           จากการทดลองหาสภาวะการสกัดสาร CAF, EGCG และ EC จากตัวอย่างใบชาเมี่ยงโดยการสกัดแบบรีฟลักซ์ด้วยเครื่องไมโครเวฟ (Microwave-assisted extraction) พบว่า สภาวะที่เหมาะสมในการสกัดสาร CAF, EGCG และ EC ได้มากและเหมาะสมที่สุด คือ ใช้ตัวทำละลายเอทานอล อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล 1:25 (g/mL) กำลังไฟฟ้าที่ใช้ในการสกัด 350 วัตต์และสกัดโดยใช้เวลา 20 นาที แสดงดังตารางที่ 31


ตารางที่ 31  สภาวะที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยง
 

5.5) การหาปริมาณสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) ด้วยสภาวะที่เหมาะสมจากตัวอย่างใบชาเมี่ยง
            นำใบชาเมี่ยงตัวอย่างจากจังหวัดเชียงใหม่ ลำปาง น่านและแพร่ นำมาสกัดด้วยสภาวะที่เหมาะสม ดังตารางที่ 13  และทำการวิเคราะห์หาสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) ด้วยเทคนิค HPLC ให้ผลดังตารางที่ 32
ตารางที่ 32  การวิเคราะห์สารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยง

                        พบว่า ใบชาเมี่ยงจากจังหวัดเชียงใหม่ มีปริมาณ CAF, EGCG และ EC เท่ากับ 12.43, 2.92 และ 2.78 mg/g โดยสารสำคัญที่มากกว่าแหล่งอื่นโดยต่างกันอย่างไม่มีนัยสำคัญ

 

ข้อมูลเกี่ยวข้อง

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 4)

5. ผลการวิเคราะห์ทางเคมี 5.1) ตัวทำละลายที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยง             หาตัวทำละลายที่เหมาะสมในการสกัดสารสำคัญ 3 ชนิด คือ คาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยงโดยใช้ตัวทำละลายที่แตกต่างกันทั้งหมด 4 ชนิด คือ  เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) โดยผลการทดลองแสดงดังภาพที่ 150
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 4)

6. การขึ้นรูปผลิตภัณฑ์ต้นแบบชาเมี่ยง 6.1) การผลิตภัณฑ์สปาต้นแบบชาเมี่ยง คณะผู้วิจัยทำการออกแบบผลิตภัณฑ์สปาต้นแบบชาเมี่ยง 4 ชนิด ได้แก่ 1)    แชมพูและครีมนวดผมสำหรับลดผมหลุดร่วง สูตร 1 ชาเมี่ยง (ภาพที่ 64)        การปรับสูตรโดยการคัดเลือกวัตถุดิบชนิดต่างๆ ได้แก่ สารชำระล้าง สารเพิ่มความหนืด สารเพิ่มความคงตัวของสูตร สารปรับสภาพผมไม่ให้แห้งหลังสระและสารเพิ่มความนุ่มลื่นของเส้นผม เป็นต้น นอกจากนั้นยังพัฒนาสูตรน้ำหอมจากการผสมน้ำมันหอมระเหยจากดอกไม้พื้นถิ่นภาคเหนือและน้ำมันหอมระเหยจากเปลือกผลไม้จนได้กลิ่นที่เหมาะสมและได้สูตรที่มีความคงตัวดีโดยมีส่วนผสมธรรมชาติเป็นวัตถุดิบในการขึ้นรูปแชมพู ชาเมี่ยงสำหรับลดผมหลุดร่วงและกระตุ้นการสร้างเซลล์รากผมใหม่ มีส่วนประกอบ ดังนี้   1)    ส่วนผสมธรรมชาติ         ผงมุก ลาโนลีน น้ำผึ้ง น้ำมันงาสกัดเย็น มะกรูด สารสกัดชาเมี่ยง สารสกัดหลินจือ สารสกัดหนานเฉาเหว่ย สารสกัดใบขี้เหล็ก สารสกัดอินทนิลน้ำ ใบหมี่ เกลือแกง สารสกัดสมุนไพรอื่นๆ สำหรับใช้เป็นสารกันเสีย และน้ำมันหอมระเหยธรรมชาติจากดอกไม้กลิ่นตามความชอบ    2)    ส่วนผสมพื้นสำหรับขึ้นรูปแชมพู         DI Water, Sodium Laureth Sulfate, Glycerin, Cocoamphodiacetate, Lauryl glucoside, Acrylate copolymer, Disodium EDTA, Cocamidopropyl betaine, Polyquaternium-7, Panthenol, Honey, Preservative, Citric acid, BHT, Propylene glycol, PEG-40 hydrogenated castor oil, Orange oil, Lemon oil, น้ำมันหอมระเหยจากดอกไม้พื้นถิ่นภาคเหนือ ได้แก่ กาสะลอง แก้ว ลีลาวดี อินทนิลน้ำและ เปลือกมะกรูด มะนาวและเติมสารสกัดใบเมี่ยงสดที่ความเข้มข้นร้อยละ 2.0 ครีมนวดผมชาเมี่ยง        สำหรับส่วนผสมธรรมชาติที่ใช้เป็นวัตถุดิบในการขึ้นรูปครีมนวดผมชาเมี่ยงสำหรับลดผมหลุดร่วงและกระตุ้นการสร้างเซลล์รากผมใหม่ มีส่วนประกอบ ดังนี้ 1)    สารสกัดสมุนไพร         สารสกัดว่านหางจระเข้ สารสกัดมะกรูด สารสกัดชาเมี่ยง สารสกัดอัญชัน สารสกัดอินทนิลน้ำ      2)    สารสกัดสมุนไพรอื่นๆ         มะขามป้อม มะคำดีควาย ส้มป่อย บอระเพ็ด หนานเฉาเหว่ย หลินจือ ในปริมาณที่เหมาะสม 3)    สารอื่นๆ          Wax AB น้ำมันมะกอกบริสุทธิ์ ผงมุก      ส่วนผสมพื้นสำหรับขึ้นรูปครีมนวดผมชาเมี่ยง         DI Water, Sodium Laureth Sulfate, Glycerin, Cocoamphodiacetate, Lauryl glucoside, Acrylate copolymer, Disodium EDTA, Cocamidopropyl betaine, Polyquaternium-7, Panthenol, Honey, Preservative, Citric acid, BHT, Propylene glycol, PEG-40 hydrogenated castor oil, Orange oil, Lemon oil, น้ำมันหอมระเหยจากดอกไม้พื้นถิ่นภาคเหนือ ได้แก่ กาสะลอง แก้ว ลีลาวดี อินทนิลน้ำและ เปลือกมะกรูด มะนาวและเติมสารสกัดใบชาเมี่ยงที่ความเข้มข้นร้อยละ 2.0  4)    ผลการสำรวจความพึงพอใจการใช้แชมพูและครีมนวดสมุนไพร สูตร 2      การสำรวจความพึงพอใจการใช้แชมพูและครีมนวดสมุนไพร สูตร 2 เก็บข้อมูลจากกลุ่มตัวอย่างที่ทดลองใช้ผลิตภัณฑ์ จำนวน 25 ราย โดยใช้แบบสอบถามเป็นเครื่องมือในการเก็บรวบรวมข้อมูลโดยผลการสำรวจ แบ่งออกเป็น 6  ส่วน ดังนี้     ส่วนที่ 1 ลักษณะทั่วไป พฤติกรรมการใช้แชมพูและครีมนวดและสภาพเส้นผมของผู้ทดลองใช้แชมพูและครีมนวดสมุนไพร สูตร 2     ส่วนที่ 2 ความพึงพอใจในคุณสมบัติของแชมพูและครีมนวด     ส่วนที่ 3 ผลหลังการทดลองใช้แชมพูและครีมนวด     ส่วนที่ 4 ความคิดเห็นเกี่ยวกับส่วนผสมทางการตลาด 4P’s ของแชมพูและครีมนวด     ส่วนที่ 5 การตัดสินใจหลังการทดลองใช้แชมพูและครีมนวด     ส่วนที่ 6 ข้อเสนอแนะสำหรับผลิตภัณฑ์ ส่วนที่ 1 ลักษณะทั่วไป พฤติกรรมการใช้แชมพูและครีมนวดและสภาพเส้นผมของผู้ทดลองใช้แชมพูและครีมนวด สมุนไพร สูตร 2   ตารางที่ 33  เพศของผู้ทดลองใช้
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 2)

       3.5 ความสามารถในการจับโลหะ (Metal chelating activity)             ค่าความสามารถในการจับโลหะของชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือ ครอบคลุม 4 จังหวัด ได้แก่ จังหวัดแพร่ จังหวัดลำปาง จังหวัดเชียงใหม่ และ จังหวัดน่านแสดงดังภาพที่ 46 ค่าความสามารถในการจับโลหะของชาเมี่ยงของจังหวัดเชียงใหม่สูงกว่าจังหวัดน่าน จังหวัดลำปาง และจังหวัดแพร่ ซึ่งมีค่าความสามารถในการจับโลหะเท่ากับ 1,127.25 1,157.35 1,356.12 และ 1,198.65 µmol EDTA equivalent/g sample ตามลำดับการศึกษาฤทธิ์คีเลชันของโลหะ (Metal Chelating Activity) ด้วยวิธี Ferrous Metal Chelating เป็นตรวจสอบหาสารสกัดที่สามารถลดการเกิดปฏิกิริยาของสารเฟอร์โรซีน (Ferrozine) กับไอออนของโลหะ (Kim et al., 2008) Ebrahimzadeh และ คณะ (2008) พบว่า สารประเภทฟลาโวนอยด์และแทนนินมีฤทธิ์ในการจับโลหะได้ดีอีกทัั้งงานวิจัยของ Mohan และ คณะ (2012) พบว่า มีีสารกลุ่มแทนนินและฟีนอลิกมีฤทธิ์ในการจับโลหะได้เช่นกัน (ดังภาพที่ 135)
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค

2). การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค     2.1 ค่าความเป็นกรดด่างของตัวอย่างน้ำเมี่ยง             ทำการเก็บตัวอย่างน้ำเมี่ยงจากจังหวัดเชียงใหม่ ลำปาง แพร่และน่าน จำนวน 10 ตัวอย่าง ซึ่งตัวอย่างน้ำเมี่ยงที่เก็บมาได้จากการไปซื้อจากชาวบ้านที่หมักเองโดยตรงมีลักษณะดังภาพที่126 จากนั้นทำการบันทึกสถานที่เก็บ ลักษณะทางกายภาพ สีของน้ำเมี่ยงและวัดค่า pH ของน้ำเมี่ยง (ตารางที่ 24) และนำตัวอย่าง น้ำเมี่ยงมาคั้นเอาเฉพาะส่วนน้ำเก็บไว้ในหลอดไมโครเซ็นตริฟิวก์ นำไปปั่นเหวี่ยงให้ตกตะกอนใส่หลอด tube จากนั้นเก็บไว้ที่อุณหภูมิ 4oC เพื่อรอใช้งาน (ภาพที่ 127)  
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 3)

4.4) การหาปริมาณองค์ประกอบหลักทางเคมีของสารสกัดจากตัวอย่างใบชาเมี่ยงโดยใช้เทคนิคโคร                            มาโทกราฟีของเหลวสมรรถนะสูง (High performance liquid chromatography, HPLC)             งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมในการสกัดปริมาณสารสำคัญ คือ คาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยวิธีรีฟลักซ์ด้วยเครื่องไมโครเวฟ (Microwave-assisted extraction) และทำการหาสภาวะที่เหมาะสมในการสกัด คือ ชนิดของตัวทำละลาย อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย กำลังไฟฟ้าที่ใช้ในการสกัด (วัตต์) และ เวลาในการสกัด (นาที) จากนั้นนำสกัดที่ได้ไปวิเคราะห์หาปริมาณสารสำคัญด้วยเทคนิค HPLC 4.5) การหาสภาวะที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยกระบวนการสกัดแบบรีฟลัก (reflux) โดยใช้เครื่องไมโครเวฟ            ในการหาสภาวะที่เหมาะสมในการสกัดสารสารคาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) ได้ทำการหาสภาวะที่เหมาะสมของตัวแปร ดังต่อไปนี้ -    ชนิดของตัวทำละลาย คือ เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) -    อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 g/mL -    กำลังไฟฟ้าที่ใช้ในการสกัด คือ 70, 210, 350, 490 และ 630 วัตต์ -    เวลาในการสกัด (นาที) คือ 10, 15, 20, 25 และ 30 นาที      โดยขั้นตอนในการสกัดแสดงดังภาพที่ 144 1.1) การหาสภาวะที่เหมาะสมของชนิดของตัวทำละลาย             นำตัวอย่างใบชาเมี่ยง 5.00xx กรัม มาสกัดโดยวิธีรีฟลักโดยใช้เครื่องไมโครเวฟ (Microwave-assisted extraction) ด้วยตัวทำละลายที่แตกต่างกัน คือ เมทานอล (MeOH), เอทานอล (EtOH), อะซีโตน (Acetone) และ น้ำ (H2O) ซึ่งใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย 1:30 (g/mL) โดยใช้กำลังไฟฟ้าในการสกัด คือ 280 วัตต์ เป็นเวลา 10 นาที ทำการกรองสารสกัดที่ได้ออกจากตัวอย่าง จากนั้นนำสารสกัดที่ได้ 2 mL มาเจือจางด้วยเอทานอลในขวดวัดปริมาตรขนาด 10 mL นำสารสกัดไปทำการกรองผ่านแผ่นเมมเบรนที่มีขนาดของรูพรุน 0.45 ไมโครเมตร ก่อนนำไปวิเคราะห์ด้วยเทคนิค HPLC แล้วนำผลการวิเคราะห์จากสารสกัดมาเทียบกับกราฟมาตรฐานเพื่อหาปริมาณสารสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชินที่มีอยู่ในตัวอย่างใบชาเมี่ยงเพื่อหาตัวทำละลายที่เหมาะสมที่สุดในการสกัดสารดังกล่าวเพื่อใช้ในการหาสภาวะต่อไป โดยขั้นตอนการสกัดแสดงดังภาพที่144 1.2) การหาสภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย                 เพื่อหาสภาวะที่เหมาะสมอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่ใช้ในการสกัดสารคาเฟอีน  อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชาเมี่ยง โดยการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่แตกต่างกัน คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 (g/mL) โดยใช้ตัวทำละลายเอทานอลทำการสกัดเป็นระยะเวลา 10 นาที และ ใช้กำลังไฟฟ้า คือ 280 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144                                                                                                                                                                            1.3) การหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัด              เพื่อหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชิน ในการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:25 (g/mL) โดยใช้เวลาในการสกัด คือ 10 นาที แต่ใช้กำลังไฟฟ้าในการสกัดแตกต่างกันออกไป คือ 70, 210, 350, 490 และ 630 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144 1.4) การหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด             เพื่อหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชา
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านป่าเหมี้ยง (PM) ตำบลแจ้ซ้อน อำเภอเมืองปาน จังหวัดลำปาง (ต่อ1)

การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

การทดสอบฤทธิ์ของสารสกัดใบชาเมี่ยงต่อการต้านเชื้อ Streptococcus mutans และ Lactobacillus spp. โดยวิธี disc diffusion (ต่อ)

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านป่าเหมี้ยง (PM) ตำบลแจ้ซ้อน อำเภอเมืองปาน จังหวัดลำปาง (ต่อ3)

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ3)

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

พลวัตรของชาเมี่ยงภายใต้การเปลี่ยนแปลงภูมิอากาศภาคเหนือของประเทศไทย

พลวัตรของชาเมี่ยงภายใต้การเปลี่ยนแปลงภูมิอากาศภาคเหนือของประเทศไทย Dynamics of Miang tea under Climate changed in Northern Thailand  ธนากร ลัทธิ์ถีระสุวรรณ1* มธุรส ชัยหาญ4  อารีกมล ต ไชยสุวรรณ1  วรรณา มังกิตะ1   ธีระพล เสนพันธุ์3  วชิระ ชุ่มมงคล4   เพิ่มศักดิ์ สุภาพรเหมินทร์4  และสิริยุพา เลิศกาญจนาพร1 Thanakorn Lattirasuvan1* Mathurot Chaiharn4 Areekamol Tor.Chaisuwan1  Wanna Mangkita1 Theeraphol Senphan3   Vachira Choommongkol4  Permsak Supapornhemin4 and Siriyupa Lerdkanjanaporn1 มหาวิทยาลัยแม่โจ้-แพร่ เฉลิมพระเกียรติ จ. แพร่ 54140 คณะวิศวกรรมและอุตสาหกรรมเกษตร มหาวิทยาลัยแม่โจ้ จ.เชียงใหม่ 50290 กรมวิชาการเกษตร สถาบันวิจัยพืชไร่ ศูนย์วิจัยพืชไร่ จ.เชียงใหม่ 50290 คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้ จ.เชียงใหม่ 50290 ………………………………………………………………..   บทคัดย่อ             การศึกษาพลวัตรของชาเมี่ยงภายใต้การเปลี่ยนแปลงภูมิอากาศภาคเหนือของประเทศไทยวิจัยในประเด็น 3 เรื่องหลักคือ 1) ลักษณะนิเวศสวนชาเมี่ยง 2) การใช้ประโยชน์เมี่ยงหมักทางการแพทย์และเภสัชกรรม และ 3) การศึกษาห่วงโซ่อุปทานในการผลิตเมี่ยง ในพื้นที่ภาคเหนือ 4 จังหวัดได้แก่ บ้านเหล่า จ. เชียงใหม่ บ้านป่าเหมี้ยง จ.ลำปาง บ้านแม่ลัว จ. แพร่ และ บ้านศรีนาป่าน จ.น่าน พบว่า พบพรรณไม้จำนวน 14-22 ชนิด สมบัติดินชั้นบนมีความอุดมสมบูรณ์สูงกว่าดินชั้นล่าง ผลการวิเคราะห์การต้านจุลินทรีย์ของสารสกัด พบว่า สารสกัดใบเมี่ยงหมักและใบเมี่ยงสดมีฤทธิ์ยับยั้งแบคทีเรียทดสอบได้ทุกชนิด ได้แก่ Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, Staphylococcus aureus และ S. epidermidis โดยใบเมี่ยงสดแสดงฤทธิ์การยับยั้งแบคทีเรีย P. acnes ได้ดีที่สุด และใบเมี่ยงหมักแสดงฤทธิ์ยับยั้งแบคทีเรีย P. acnes ได้ดีที่สุด ผลการวิเคราะห์ข้อมูลด้านห่วงโซ่อุปทาน พบว่าทุกจังหวัดมีผลตอบแทนคุ้มค่าต่อการลงทุน การพัฒนาห่วงโซ่อุปทานเมี่ยงอาจจำเป็นต้องใช้ห่วงโซ่อุปทานส่วนขยายเพื่อบริหารความเสี่ยงด้านการดำรงไว้ซึ่งวัฒนธรรมดั้งเดิม        และนำแนวคิดในการหาผู้ร่วมทุนทำโครงการการรับซื้อผลผลิตแบบองค์รวมมาปรับใช้เพื่อรักษาสมดุลของพื้นที่ให้มีความยั่งยืน คำสำคัญ: ลักษณะนิเวศ, ชาเมี่ยง, พฤกษเคมี ฤทธิ์ต้านแบคทีเรีย ฤทธิ์ต้านอนุมูลอิสระ,ห่วงโซ่อุปทาน ABSTRACT             Dynamics of “Miang” under climate changed in Northern Thailand was investigated 3 mains proposes were 1) the study of ecological characteristics of Camellia sinensis var. assamica (Miang tea) 2) application of fermented tea leave and fermented tea processing water for medicinal and pharmaceutical potential and 3) the supply chain analysis of Miang in northern of Thailand. The four villages of study sites. The result shown that; species composition in “Miang” tea garden found vegetation species around 14 to 22 species. Soil fertility at surface soil was higher than sub-surface soil. Eight types of crude extract including ethanol crude extract of pickled tea leave and ethanol crude extract of fresh tea leave were investigated to antibacterial activity. Antibacterial of all crude extracts were inhibited the growth of bacteria including Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, Staphylococcus aureus and S. epidermidis. The highest inhibition effect of ethanol crude extract of pickled tea leave were P. acnes and the strongest inhibition effect of ethanolic crude extract of fresh tea leave were P. acnes, followed by S. epidermidis, B. cereus, S. aureus and E. coli. The analysis is interpreted both quality and quantitative form. It can be shown that the return is worthiness to investment in all areas. The study of supply chain in those found that the complexity of supply chains is not complicate, the stakeholder within supply chain composed of the farmer. The extended supply chain might be used for development of supply chain of Miang to manage the risk of cultural impact. Moreover, the concept of investor
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 1)

2.3) การทดสอบประสิทธิภาพของ Streptomycin 2.5 mg/ml ต่อการยับยั้งแบคทีเรียทดสอบ             นำ Streptomycin 2.5 mg/ml มาทดสอบฤทธิ์ในการยับยั้งแบคทีเรียทดสอบ 5 ชนิด พบว่า มีประสิทธิภาพในการสร้างวงใสยับยั้งแบคทีเรียทดสอบได้แตกต่างกันดังแสดงในตารางที่ 26 แผนภาพที่ 2 และภาพที่ 130 ตารางที่ 26  ประสิทธิภาพของ Streptomycin 2.5 mg/ml ในการยับยั้งแบคทีเรียทดสอบ
การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

องค์ประกอบทางเคมีของใบชาสด

    ชาที่ผลิตทางการค้าส่วนใหญ่มาจาก 2 สายพันธ์ุ คือ Camellia sinensis var. sinensis (ชาจีน, Chinese tea) และ Camellia sinensis var. assamica (ชาเมี่ยง หรือ ชาเมี่ยง, Assam tea) การเก็บใบชาสดที่มีคุณภาพเพื่อนำมาเข้ากระบวนการผลิตจะใช้แรงงานคนในการเก็บ โดยเลือกเก็บเฉพาะยอดชาที่ตูมและใบที่ต่ำจากยอดตูมลงมา 2-3 ใบ (1 ยอด 2-3 ใบ) โดยทั่วไป      ยอดใบชาสด ประกอบด้วย ความชื้นประมาณ 75-80 % โดยน้ำหนัก ส่วนที่เหลือ (20-25 %) เป็นของแข็งทั้งหมด      ของแข็งทั้งหมด ประกอบด้วย ส่วนที่ไม่ละลายน้ำ (insoluble matter) และส่วนที่ละลายน้ำ (soluble matter) องค์ประกอบทางเคมีของส่วนที่ละลายน้ำและไม่ละลายน้ำ ได้แก่     องค์ประกอบสำคัญในส่วนที่ละลายน้ำ คือ โพลิฟีนอล (polyphenols) มีอยู่ประมาณ 10-25 % โดยน้ำหนักแห้ง (Haslam, 2003) โพลิฟีนอล เป็นองค์ประกอบในใบชาสด ประกอบด้วย กลุ่มของสารประกอบ 6 กลุ่ม คือ flavanols, hydroxy-4-flavonols, anthocyanins, flavones, flavonols และ phenolic acids โดยฟลาวานอล (flavanols) เป็นองค์ประกอบที่พบมากที่สุด (60-80 % ของโพลิฟีนอล) เรียกว่า คาเทชิน (catechins) คาเทชินที่พบมากในชา ได้แก่ (-)-Epigallocatechin-3-gallate (EGCG), (-)-Epigallocatechin (EGC), (-)-Epicatechin-3-gallate (ECG) และ (-)-Epicatechin (EC) คาเทชินเหล่านี้มีอยู่ประมาณ 90 % ของ คาเทชินทั้งหมดและกลุ่มของคาเทชินที่พบในปริมาณน้อย ได้แก่ (+)-Gallocatechin (GC), (+)-Catechin (C) และคาเทชินอื่นๆ เช่น (-)-Gallocatechin gallate (GCG) และ (-)-Catechin gallate (CG) (Zhen et. al., 2002) หน้าที่หลักของสารประกอบฟลาโวนอยด์ในใบชา (Major functions of tea flavonoids)    1. Antioxidant activity      สารประกอบฟลาโวนอยด์ มีคุณสมบัติในการเป็นสารต้านออกซิเดชัน (antioxidant) โดยทำหน้าที่เป็นตัวขัดขวางหรือหยุดปฏิกิริยาต่อเนื่องของอนุมูลอิสระ (free radical chain terminator) ตัวจับออกซิเจน (oxygen scavenger) หรือเป็น chelating agent ของโลหะ เป็นต้น กลไกการทำงานของสารต้านออกซิเดชัน (Antioxidant)      จะทำหน้าที่เป็นสารรีดิวซ์ (reducing agent) ถ่ายเทไฮโดรเจนอะตอมออกจากโมเลกุลและให้กับออกซิเจน ทำให้ออกซิเจนไม่สามารถเกิดปฏิกิริยาได้ ถ้าเป็นในอาหารออกซิเจนจะก่อให้เกิดการเปลี่ยนแปลงลักษณะต่างๆของอาหาร เช่น สี กลิ่นและคุณค่าทางอาหาร เป็นต้น แต่ถ้าเป็นในร่างกายจะทำให้เกิดอนุมูลอิสระ (free radicals) ในร่างกาย ส่งผลให้เนื้อเยื่อหรือเซลล์ต่างๆ ในร่างกายถูกทำลาย ยิ่งปริมาณอนุมูลอิสระสูงมากเพียงใดก็ยิ่งเป็นตัวเร่งให้เกิดโรคภัยไข้เจ็บ รอยเหี่ยวย่นและความแก่ จากการศึกษาพบว่าระดับความเครียดจะส่งผลให้เกิดปฏิกิริยาของอนุมูลอิสระกับออกซิเจนสูงขึ้น นอกจากนั้นอายุยิ่งมากขึ้นการสะสมของอนุมูลอิสระก็จะสูงเพิ่มขึ้นด้วย ดังนั้นการรับประทานอาหารประเภทผักและผลไม้ที่มีสารต้านออกซิเดชัน (antioxidant) จะสามารถช่วยปกป้องจากการท้าลายของอนุมูลอิสระได้     จากการศึกษา พบว่าสารประกอบฟลาโวนอยด์ในใบชามีศักยภาพในการเป็นสารต้านออกซิเดชัน (antioxidant) และเป็นตัวจับอนุมูลอิสระ (free radical scavenging) ได้สูงกว่าวิตามินซี (vitamin C หรือ ascorbic acid) และวิตามินอี (vitamin E หรือ tocopherol) เพื่อป้องกันการเสื่อมของเซลล์จากอนุมูลอิสระ (Vison et. al.1995) การที่สารที่มีอยู่ในธรรมชาติสามารถแสดงสมบัติการเป็นสารต้านออกซิเดชันได้นั้นจะเกี่ยวข้องกับความสามารถในการให้ไฮโดรเจนอิออน (H+) ของหมู่ไฮดรอกซิล (OH) ในสารประกอบฟีนอล ความสามารถในการยับยั้งการเกิดปฏิกิริยาออกซิเดชันของสารต้านการเกิดออกซิเดชัน (antioxidant activity; AOA) ขึ้นอยู่กับตำแหน่งและจำนวนของหมู่ไฮดรอกซิล รวมทั้งโครงสร้างอื่นๆ ในโมเลกุลด้วย     สารประกอบฟีนอลที่มีหมู่แทนที่เป็นหมู่ให้อิเล็คตรอน (electron donating group) เช่น หมู่ไฮดรอกซิล (-OH) หมู่เมธอกซิล (-OCH3) หมู่เมธิล (-CH3) หมู่เอธิล (-C2H5) หรือ หมู่ t-butyl (-C(CH3)3) อยู่ที่ตำแหน่งออร์โท (ortho) หรือพารา (para) จะเพิ่ม ค่า AOA สารต้านออกซิเดชัน (antioxidants) กลุ่มที่พบมากที่สุดในธรรมชาติ ได้แก่ กลุ่มฟลาโวนอยด์ (flavonoids) ฟลาโวนอยด์ในพืชเป็นสารอินทรีย์ประเภทโพลีฟีนอล (polyphenol) มีโครงสร้างเป็นไดฟีนิลโพรเพน (diphenylpropane) มีการจัดเรียงตัวเป็นแบบ C6-C3-C6 ฟลาโวนอยด์ เป็นสารที่มีสมบัติในการยับยั้งการเกิดปฏิกิริยาออกซิเดชันที่มีในอาหารประเภทไขมันและไขมัน โครงสร้างของสารในกลุ่ม ฟลาโวนอยด์ที่เกี่ยวข้องกับการยับยั้งการเกิดปฏิกิริยาออก
การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

โครงสร้างของระบบนิเวศ

        ตามความหมายของ Odum (1962) โครงสร้างของระบบนิเวศหมายถึง (1) องค์ประกอบของสังคมชีวิตซึ่ง ได้แก่ ชนิด จำนวน ความหนาแน่น มวลชีวภาพ รูปชีวิต ชั้นอายุ และการกระจายของประชากรของทั้งพืชและสัตว์ รวมตลอดถึงมนุษย์ซึ่งเป็นตัวการที่ทำให้เกิดการเปลี่ยนแปลงในระบบนิเวศที่สำคัญยิ่ง (2) ปริมาณและการกระจายของสิ่งไม่มีชีวิต ได้แก่ ดิน หิน น้ำ แร่ธาตุอาหาร รวมทั้งลักษณะสภาพภูมิประเทศต่าง ๆ และ (3) สภาพและช่วงความแตกต่างในด้านปัจจัยแวดล้อม เช่นอุณหภูมิ ความชื้น แสงสว่าง ปริมาณน้ำฝน และสภาพลมฟ้าอากาศอื่น ๆ จะเห็นว่าระบบนิเวศแต่ละระบบจะมีลักษณะโครงสร้างแตกต่างกัน การจำแนกลักษณะโครงสร้างของระบบนิเวศออกเป็น 3 ลักษณะใหญ่ ๆ ดังกล่าวช่วยให้การศึกษาและวิเคราะห์ระบบนิเวศได้สมบูรณ์ยิ่งขึ้น อย่างไรก็ดี โครงสร้างของระบบนิเวศไม่ว่าจะเป็นระบบนิเวศบนบก หรือ ระบบนิเวศในน้ำต่างก็มีลักษณะหลาย ๆ อย่างที่คล้าย ๆ กันและบางอย่างก็แตกต่างกันไปโดยเฉพาะอย่างยิ่งต่างก็มีองค์ประกอบของชีวิตที่สำคัญแบ่งตามลักษณะการบริโภคอยู่ 3 ระดับชีวิต (trophic levels) ด้วยกันคือ     1) ผู้ผลิต (primary producers) ได้แก่ พืชใบเขียวทุกชนิดที่สามารถปรุงอาหารเองได้เราเรียกพวกนี้ว่าออโตทรอพฟิค (autotrophic) พืชพวกนี้จะตรึงพลังงานจากแสงอาทิตย์ โดยกระบวนการสังเคราะห์แสง แล้วเปลี่ยนพลังงานแสงมาเป็นพลังงานทางชีวเคมีในรูปของแป้งและน้ำตาลที่อยู่ในพืชซึ่งใช้สำหรับการดำรงชีพของพืชเองและใช้เป็นอาหารสำหรับสัตว์ด้วย      2) ผู้บริโภค (Consumers) ได้แก่ สัตว์ที่บริโภคแยกแยะและกระจายพลังงานที่พืชตรึงเอาไว้โดยทางตรงและทางอ้อม พวกกินพืชโดยตรงเรียกเฮอร์บีวอร์ (herbivores) หรือผู้บริโภคขั้นปฐมภูมิ (primary consumers) พวกนี้ ได้แก่ ช้าง ม้า วัว ควาย แพะ แกะ กวาง และกระต่าย เป็นต้น สำหรับสัตว์ที่ไม่กินพืชโดยตรง แต่อาศัยพลังงานจากพืชทางอ้อมด้วยการกินเนื้อของสัตว์ที่กินพืชอีกทอดหนึ่ง พวกนี้เรียกว่าคาร์นิวอร์ (carnivores) หรือผู้บริโภคขั้นทุติยภูมิ (secondary consumers) เช่นสุนัขจิ้งจอก เสือ และสิงโต เป็นต้น สำหรับสัตว์กินเนื้อที่มีขนาดใหญ่กว่าบริโภคสัตว์กินเนื้อที่มีขนาดเล็กกว่า กรณีเช่นนี้อาจจัดสัตว์ที่บริโภคสัตว์กินเนื้อด้วยกันเองไว้เป็นผู้บริโภคขั้นตติยภูมิ (tertiary Consumers) ก็ได้สำหรับมนุษย์เราซึ่งเป็นตัวการสำคัญในการควบคุมและเปลี่ยนแปลงระบบนิเวศนั้น เป็นผู้บริโภคได้ทั้งพืชและสัตว์จึงเรียกพวกที่บริโภคได้ทั้งพืชและสัตว์นี้ว่า โอมนิวอร์ (omivores) จะเห็นว่าผู้บริโภคระดับต่าง ๆ ดังกล่าวไม่สามารถปรุงอาหารไว้กินเองเหมือนผู้ผลิตได้ พวกนี้ดำรงชีวิตอยู่ได้ด้วยการกินสิ่งมีชีวิตอื่น ๆ ซึ่งจัดเป็นอาหารสำเร็จรูปแล้วเราจึงเรียกพวกนี้ ว่าเฮทเทอโรทรอพฟิค (heterotrophic)      3) ผู้ย่อยสลายอินทรีย์สาร (decomposers) ได้แก่ พวกเห็ดรา จุลินทรีย์ หรือบักเตรีบางชนิด เป็นพวกที่ดำรงชีวิตโดยการดูดซับอาหารจากซากพืชและสัตว์ จัดเป็นพวกเฮทเทอโรทรอพฟิค ที่ช่วยให้ซากพืชและสัตว์ผสลายและปลดปล่อยธาตุต่าง ๆ กลับสู่ดินไปเป็นอาหารแก่พืชหรือผู้ผลิตอีกครั้งหนึ่ง    นอกจากจะมีองค์ประกอบของชีวิตเหมือนกันแล้ว ระบบนิเวศบนบกและในน้ำยังต้องการสารและแร่ธาตุอาหารที่คล้าย ๆ กัน เช่นในโตรเจน ฟอสฟอรัส โปแตสเซียม และแร่ธาตุอื่น ๆ อีกทั้งถูก จำกัด และควบคุมโดยปัจจัยแวดล้อมที่คล้าย ๆ กัน เช่นอุณหภูมิ และแสงสว่าง เป็นต้น ประการสุดท้ายระบบนิเวศทั้งบนบก และในน้ำ ยังมีการจัดเรียงหน่วยของสังคมชีวิตในแนวตั้งแบบเดียวกันด้วย คือจะมีพวกออโตทรอพฟิคอยู่ชั้นบน และเฮทเทอโรทรอพรีคอยู่ชั้นล่าง กระบวนการสังเคราะห์แสงซึ่งกระทำโดยผู้ผลิตส่วนใหญ่จึงเกิดในชั้นบนที่ได้รับแสงสว่าง ขณะที่กิจกรรมของผู้บริโภค และผู้ย่อยสลายอินทรีย์สารจะดำเนินอยู่ในระดับที่ต่ำลงมา และขอเน้นในที่นี้ว่าถึงชั้นความหนาในแนวตั้งของระบบนิเวศจะแตกต่างกันไปมากก็ตาม แต่พลังงานจากแสงที่ระบบนิเวศได้รับในแนวระดับจะเท่ากันหมด ดังนั้นการศึกษาเปรียบเทียบระบบนิเวศต่าง ๆ จึงควรเปรียบเทียบต่อหน่วยพื้นที่มากกว่าต่อหน่วยปริมาตร     อย่างไรก็ตาม ระบบนิเวศบนบกและในน้ำต่างก็มีโครงสร้างทั้งที่แตกต่างกันและเหมือนกัน เช่น องค์ประกอบชนิดพืชและสัตว์มีความแตกต่างกันอย่างสิ้นเชิง บทบาทของผู้ผลิต ผู้บริโภค และผู้ย่อยสลายอินทรียสาร มีความแตกต่างกันมากตามความสามารถในการปรับตัวและจากผลของการวิวัฒนาการ โครงสร้างระหว่างระดับชีวิตที่จัดเรียงตามลำดับขั้นของการบริโภคก็แตกต่างกันมาก โดยที่ผู้ผลิตในระบบนิเวศบนบกส่วนมากจะมีขนาดใหญ่ แต่มีจำนวนน้อยขณะที่ผู้ผลิตของระบบนิเวศในน้ำส่วนมากมีขนาดเล็ก แต่มีเป็นจำนวนมากปกติระบบนิเวศบนบกหรือ โดยทั่วไปจะมีมวลชีวภาพของผู้ผลิตมากที่สุดและมวลชีวภาพของผู้บริโภคในระดับสวดถัดขึ้นไปจะลดน้อยลงตามลำดับ สำหรับระบบนิเวศในน้ำมวลชีวภาพของผู้ผลิตส่วนใหญ่เป็นพวกแพลงตอนพืช ซึ่งอาจมีน้อยกว่ามวลชีวภาพของผู้บริโภคได้เ
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

อุปกรณ์และวิธีการ

อุปกรณ์และวิธีการ               โครงการวิจัยย่อยที่ 1 ลักษณะนิเวศและการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินของชาเมี่ยงในภาคเหนือประเทศไทย 1.การเลือกพื้นที่ศึกษา             การศึกษาครั้งนี้จะดำเนินการศึกษาในพื้นที่ทั้ง 4 หมู่บ้านได้แก่ บ้านแม่ลัว หมู่ที่ 4 ตำบลป่าแดง อำเภอเมือง จังหวัดแพร่ บ้านศรีนาป่าน หมู่ที่ 4 ตำบลเรือง อำเภอเมือง จังหวัดน่าน บ้านป่าเหมี้ยง หมู่ที่ 7 ตำบลแจ้ซ้อน อำเภอเมืองปาน จังหวัดลำปาง และบ้านเหล่า ตำบลเมืองก๋าย อำเภอแม่แตง จังหวัดเชียงใหม่ ซึ่งหมู่บ้านทั้ง  หมู่บ้านตั้งอยู่ในพื้นที่ต้นน้ำลำธาร พื้นที่ส่วนใหญ่เป็นพื้นที่ลุ่มน้ำชั้น 1A  สภาพที่ตั้งหมู่บ้านอยู่ในหุบเขา มีลำห้วยไหลผ่าน สภาพป่าเป็นป่าดิบเขา มีพันธุ์ไม้ที่สำคัญ เช่น ก่อ ยางปาย ทะโล้ เป็นต้น เป็นชุมชนคนป่าเมี่ยง มีอาชีพหลักในการทำเมี่ยง
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ 1 )

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน

-บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน             ดินชั้นบน (surface soil, 0-5 cm) จากความสัมพันธ์ระหว่างปัจจัยดินทางฟิสิกส์โดยเฉพาะความแข็งดินและปัจจัยทางเคมีดินพบว่า ความแข็งดิน (soil hardness) ในพื้นที่สวนหลังบ้าน (Hg) จะแสดงออกอย่างเด่นชัดที่จัดกลุ่มสูงกว่าการใช้ประโยชน์ที่ดินรูปแบบสวนเมี่ยง (Mg) พื้นที่การเกษตร (Ag)  และหย่อมป่า (Rf) ความสัมพันธ์ดินชั้นบน (ภาพที่ 85 ถึง ภาพที่ 95) และความสัมพันธ์ดินชั้นล่าง (ภาพที่ 89 ถึง ภาพที่ 110) สอดคล้องกับการศึกษาของ Tanaka et.al (2010).และ Lattirasuvan et al. (2010)
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ1)

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ3)