การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 2)

       3.5 ความสามารถในการจับโลหะ (Metal chelating activity)
            ค่าความสามารถในการจับโลหะของชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือ ครอบคลุม 4 จังหวัด ได้แก่ จังหวัดแพร่ จังหวัดลำปาง จังหวัดเชียงใหม่ และ จังหวัดน่านแสดงดังภาพที่ 46 ค่าความสามารถในการจับโลหะของชาเมี่ยงของจังหวัดเชียงใหม่สูงกว่าจังหวัดน่าน จังหวัดลำปาง และจังหวัดแพร่ ซึ่งมีค่าความสามารถในการจับโลหะเท่ากับ 1,127.25 1,157.35 1,356.12 และ 1,198.65 µmol EDTA equivalent/g sample ตามลำดับการศึกษาฤทธิ์คีเลชันของโลหะ (Metal Chelating Activity) ด้วยวิธี Ferrous Metal Chelating เป็นตรวจสอบหาสารสกัดที่สามารถลดการเกิดปฏิกิริยาของสารเฟอร์โรซีน (Ferrozine) กับไอออนของโลหะ (Kim et al., 2008) Ebrahimzadeh และ คณะ (2008) พบว่า สารประเภทฟลาโวนอยด์และแทนนินมีฤทธิ์ในการจับโลหะได้ดีอีกทัั้งงานวิจัยของ Mohan และ คณะ (2012) พบว่า มีีสารกลุ่มแทนนินและฟีนอลิกมีฤทธิ์ในการจับโลหะได้เช่นกัน (ดังภาพที่ 135)

ภาพที่ 136 ค่าความสามารถในการจับโลหะของชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือ แถบความคลาดเคลื่อนแสดงถึงค่าเบี่ยงเบนมาตรฐาน (n=3) ค่าเฉลี่ยที่มีตัวอักษรแตกต่างกัน
บนกราฟแท่ง มีความแตกต่างกันทางสถิติอย่างมีนัยสำคัญที่ระดับความเชื่อมั่นร้อยละ 95 (P≤0.05)

       4). การแยกองค์ประกอบทางเคมีของใบชาเมี่ยง
            ใบชาเมี่ยงแห้งปั่นละเอียด จำนวน 1 กิโลกรัม สกัดด้วยตัวทำละลายเอทานอล 4 ลิตร ด้วยการแช่ที่อุณหภูมิห้องเป็นเวลา 2 วัน ทำการสกัดซ้ำอีก 2 ครั้ง กรองแล้วนำไประเหยตัวทำละลายออกด้วยเครื่องระเหยแบบสุญญากาศได้สารสกัดหยาบใบชาเมี่ยง 82.17 กรัม จากนั้นนำสารสกัดหยาบใบชาเมี่ยงแยกด้วยเทคนิคคอลัมน์โครมาโทราฟีเฟสคงที่ซิลิกาเจล (คอลัมน์ สูง 12 เซนติเมตร เส้นผ่านศูนย์กลาง 10 เซนติเมตร) เฟสเคลื่อนใช้ตัวทำละลายแบบเพิ่มขั้ว (แกรเดียน) เริ่มจาก EA: Hexane (0: 100) ถึง EA: Hexane (100:0) และ MeOH: EA (100:0) เก็บสารละลายใน 
            ภาชนะใบละ 50 ml ได้สาร 32 ใบ ทำการรวมแฟลกชันด้วย TLC ได้ทั้งหมด 12 แฟลกชัน ดังภาพที่ 47 จากนั้นทำการการเก็บน้ำหนักและลักษณะทางกายภาพดังตารางที่ 9


ภาพที่ 137 การแยกองค์ประกอบทางเคมีจากใบชาเมี่ยง

 

ตารางที่ 27 น้ำหนัก และลักษณะทางกายภาพของสาร

3.1) การแยก Fractions CS-8 และ CS-9
               แฟลกชัน CS-8 และ CS-9 ทดสอบด้วย TLC โดยเฟสเคลื่อนที่ 40 % EtOAc: 2 % DCM: 58 % Hexane ภายใต้แสงยูวี 254 นาโนเมตร (ภาพที่ 48,1A) และในสารละลาย ?-anisaldehyde (ภาพที่ 48,1B)  พบสารที่น่าสนใจ 2 สาร (*) ดังแสดงในภาพที่ 49

ภาพที่ 138 TLC Fractions CS-8 และ CS-9 MP (EA:DCM:Hexane (40:2:58))


             ผู้วิจัยจะทำการแยกสารให้บริสุทธิ์และระบุเอกลักษณ์เทคนิคทางสเปกโทรสโกปี รวมถึง กระบวนการสกัดที่มีประสิทธิภาพต่อไป

ภาพที่ 139 การแยกสารใบชาเมี่ยง

            ผู้วิจัยจะทำการแยกสารให้บริสุทธิ์และระบุเอกลักษณ์เทคนิคทางสเปกโทรสโกปี รวมถึงกระบวนการสกัดที่มีประสิทธิภาพต่อไป

3.2) การแยก Fractions CS-8
          ทำการแยกด้วยเทคนิคคอลัมน์โครมาโทราฟีอีกครั้งด้วยเทคนิคคอลัมน์โครมาโทรกราฟี (คอลัมน์ สูง 16 เซนติเมตร เส้นผ่านศูนย์กลาง 6 เซนติเมตร) เฟสคงที่ที่ใช้ คือ ซิลิกาเจล เฟสเคลื่อนที่ใช้ตัวทำละลายแบบเพิ่มขั้ว (แกรเดี่ยน) ใช้โมบายเฟส 10 % EA: Hexane เพิ่มขั้วของสารละลายไปจนถึง 100 % EA: Hexane และ 100 % MeOH : EA ได้ทั้งหมด 11 แฟลกชัน จากนั้น ทำการการเก็บน้ำหนักและลักษณะทางกายภาพดังตารางที่ 28

ตารางที่ 28  น้ำหนักและลักษณะทางกายภาพของแฟรกชัน CS-8 จากใบชาเมี่ยง

             นำแฟลกชัน CS8-8 ระเหยตัวทำละลาย นำเอทิล อะซิเตท กำจัดคลอโรฟิลล์ได้ตะกอนสีเหลือง ตกผลึกใหม่ด้วยเอทานอล ดังภาพที่ 50 และนำสารตัวอย่างยืนยันโครงสร้างด้วยการใช้เทคนิคนิวเคลียร์แม็กเนติกเรโซแนนซ์สเปกโทรสโกปี (Nuclear Magnetic Resonance Spectroscopy; NMR) ดังแสดงในภาพที่140

ภาพที่ 140 สาร CS8-8

ภาพที่ 141 สเปกตรัม 1H-NMR ของสาร CS8-8


            สาร CS8-8 มีสเปกตรัมที่เหมือนกับสาร CS9-3 และได้ทำการเปรียบเทียบดังแสดงในตารางที่ 11
3.3) การแยก Fractions CS-9
            ทำการแยกด้วยเทคนิคคอลัมน์โครมาโทราฟีอีกครั้งด้วยเทคนิคคอลัมน์โครมาโทรกราฟี (คอลัมน์ สูง 16 เซนติเมตร เส้นผ่านศูนย์กลาง 6 เซนติเมตร) เฟสคงที่ คือ ซิลิกาเจล เฟสเคลื่อนที่ใช้ตัวทำละลายแบบเพิ่มขั้ว (แกรเดี่ยน) ใช้โมบายเฟส 10 % EA: Hexane เพิ่มขั้วของสารละลายไปจนถึง 100 % EA: Hexane และ 10% MeOH: EA ได้ทั้งหมด 8 แฟลกชัน จากนั้นทำการการเก็บน้ำหนักและลักษณะทางกายภาพดังตารางที่ 29

ตารางที่ 29 น้ำหนักและลักษณะทางกายภาพของแฟรกชัน CS-9 จากใบชาเมี่ยง

            นำแฟลกชัน CS9-3 ระเหยตัวทำละลาย นำเอทิล อะซิเตท กำจัดคลอโรฟิลล์ได้ตะกอนสีเหลือง ตกผลึกใหม่ด้วยเอทานอลดังภาพที่ 141 และนำสารตัวอย่างยืนยันโครงสร้างด้วยการใช้เทคนิคนิวเคลียร์แม็กเนติกเรโซแนนซ์สเปกโทรสโกปี (Nuclear Magnetic Resonance Spectroscopy; NMR)                   ดังแสดงในภาพที่ 142

ภาพที่ 142 ผลึกสาร CS9-3

ภาพที่ 143 สเปกตรัม1H และ 13C-NMR ของสาร CS9-3



               จากภาพที่ 143 แสดงสเปคตรัม 1H-NMR ค่าตำแหน่งของสัญญาณ (Chemical shift, ? ) ค่าการอินทิเกรตพื้นที่ใต้พีคที่สอดคล้องกับจำนวนโปรตอนและลักษณะการแยกของพีค (Peak splitting) ของสารโดยวิเคราะห์ได้ดังนี้  


 

ภาพที่ 144 โครงสร้างของสารอิพิคาเทชิน

            เมื่อทำการผลของ 1H และ13C-NMR ของสาร CS9-3 กับงานวิจัยก่อนหน้านี้ของคุณคิมและคณะ (2009) ดังตารางที่ 30 พบว่า สารที่แยกได้ คือ สารอิพิคาเทชินจากการระบุเอกลักษณ์ด้วย 1H-NMR พบสัญญาณ ดังนี้ สัญญาณที่ตำแหน่ง dH (ppm) 4.81 (br, s, 1H, CH-2), 4.17 (br, s, 1H, CH-3), 2.86 (dd, J = 16.8, 4.6 Hz, 1H, CH-4a) และ2.74 (dd, J = 16.8, 3.0 Hz, 1H, CH-4b) ของวงแหวน tetrahydro-2H-pyran (วงแหวน C) สัญญาณที่ dH 5.92 (d, J = 2.4 Hz, 1H, CH-6) และ 5.95 (d, J = 2.4 Hz, 1H, CH-8) ของวงแหวนเบนซีน (วงแหวน A) สัญญาณที่ dH 6.98 (d, J = 1.9 Hz, 1H, CH-2?), 6.76 (d, J = 8.1 Hz, 1H, CH-5?) และ 6.80 (dd, J = 8.2, 1.9 Hz, 1H, CH-6¢) ของวงแหวนเบนซีน (วงแหวน B) 
           จากการระบุเอกลักษณ์ด้วย 13C-NMR พบสัญญาณดังนี้สัญญาณที่ตำแหน่ง dC (ppm) 79.82 (C-2), 67.44 (C-3) และ 29.22 (C-4) ของวงแหวน tetrahydro-2H-pyran (วงแหวน C) สัญญาณที่ dC 157.93 (C-5), 95.89 (C-6) 157.58 (C-7), 96.39 (C-8) 157.32 (C-9) และ 100.07 (C-10) ของวงแหวนเบนซีน (วงแหวน A)สัญญาณที่ dC 132.24 (C-1¢), 115.29 (C-2¢) 145.87 (C-3¢), 145.71 (C-4¢) 115.89 (C-5¢) และ 119.40 (C-6¢) ของวงแหวนเบนซีน (วงแหวน B)
เมื่อทำการผลของ 1H และ13C-NMR ของสาร CS9-3 กับงานวิจัยก่อนหน้านี้ของคุณคิมและคณะ (2009) ดังตารางที่ 30 พบว่า สารที่แยกได้ คือ สารอิพิคาเทชิน

ตารางที่ 30  การเปรียบเทียบค่าตำแหน่งของสัญญาณ (Chemical shift, ) 1H และ13C-NMR ของสาร CS9-3 กับสารอิพิคาเทชิน 

            ในศึกษาการแยกองค์ประกอบทางเคมีของใบชาเมี่ยงด้วยการสกัดด้วยตัวทำละลายเอทานอล แยกสารให้บริสุทธิ์ด้วยเทคนิคโครมาโทรกราฟีและการยืนยันโครงสร้างสารด้วยเทคนิคทางสเปกโทรสโกปี สามารถแยกสาร  อิพิคาเทชิน (epicatechin) ได้น้ำหนัก 0.7293 คิดเป็นร้อยละ 0.06 % เมื่อเทียบกับใบชาเมี่ยงแห้ง โดยสารอิพิคาเทชิน จัดเป็นสารกลุ่มฟลาโวนอยด์ (flavonoids) เป็นสารพอลิฟีนอลที่มีศักยภาพในการต้านอนุมูลอิสระ ต้านมะเร็ง ลดความเสี่ยงการเกิดโรคหัวใจโดยลดระดับของ cholesterol และ triglyceride ในเลือด กระตุ้นระบบภูมิคุ้มกัน ลดความเสี่ยงในการเกิดโรคหัวใจ ต้านโรคอ้วนโดยกระตุ้นการสร้างความร้อนของร่างกายซึ่งช่วยเผาผลาญพลังงานและช่วยการจัดการกับโรคอ้วน ต้านโรคเบาหวานโดยสามารถลดระดับน้ำตาลในเลือดของหนูที่เป็นเบาหวาน รวมถึงมีคุณสมบัติต้านจุลินทรีย์และต้านแบคทีเรีย

ภาพที่ 145 การแยกสารสำคัญใบชาเมี่ยง

 

ข้อมูลเกี่ยวข้อง

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค

2). การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค     2.1 ค่าความเป็นกรดด่างของตัวอย่างน้ำเมี่ยง             ทำการเก็บตัวอย่างน้ำเมี่ยงจากจังหวัดเชียงใหม่ ลำปาง แพร่และน่าน จำนวน 10 ตัวอย่าง ซึ่งตัวอย่างน้ำเมี่ยงที่เก็บมาได้จากการไปซื้อจากชาวบ้านที่หมักเองโดยตรงมีลักษณะดังภาพที่126 จากนั้นทำการบันทึกสถานที่เก็บ ลักษณะทางกายภาพ สีของน้ำเมี่ยงและวัดค่า pH ของน้ำเมี่ยง (ตารางที่ 24) และนำตัวอย่าง น้ำเมี่ยงมาคั้นเอาเฉพาะส่วนน้ำเก็บไว้ในหลอดไมโครเซ็นตริฟิวก์ นำไปปั่นเหวี่ยงให้ตกตะกอนใส่หลอด tube จากนั้นเก็บไว้ที่อุณหภูมิ 4oC เพื่อรอใช้งาน (ภาพที่ 127)  
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 2)

       3.5 ความสามารถในการจับโลหะ (Metal chelating activity)             ค่าความสามารถในการจับโลหะของชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือ ครอบคลุม 4 จังหวัด ได้แก่ จังหวัดแพร่ จังหวัดลำปาง จังหวัดเชียงใหม่ และ จังหวัดน่านแสดงดังภาพที่ 46 ค่าความสามารถในการจับโลหะของชาเมี่ยงของจังหวัดเชียงใหม่สูงกว่าจังหวัดน่าน จังหวัดลำปาง และจังหวัดแพร่ ซึ่งมีค่าความสามารถในการจับโลหะเท่ากับ 1,127.25 1,157.35 1,356.12 และ 1,198.65 µmol EDTA equivalent/g sample ตามลำดับการศึกษาฤทธิ์คีเลชันของโลหะ (Metal Chelating Activity) ด้วยวิธี Ferrous Metal Chelating เป็นตรวจสอบหาสารสกัดที่สามารถลดการเกิดปฏิกิริยาของสารเฟอร์โรซีน (Ferrozine) กับไอออนของโลหะ (Kim et al., 2008) Ebrahimzadeh และ คณะ (2008) พบว่า สารประเภทฟลาโวนอยด์และแทนนินมีฤทธิ์ในการจับโลหะได้ดีอีกทัั้งงานวิจัยของ Mohan และ คณะ (2012) พบว่า มีีสารกลุ่มแทนนินและฟีนอลิกมีฤทธิ์ในการจับโลหะได้เช่นกัน (ดังภาพที่ 135)
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 3)

4.4) การหาปริมาณองค์ประกอบหลักทางเคมีของสารสกัดจากตัวอย่างใบชาเมี่ยงโดยใช้เทคนิคโคร                            มาโทกราฟีของเหลวสมรรถนะสูง (High performance liquid chromatography, HPLC)             งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมในการสกัดปริมาณสารสำคัญ คือ คาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยวิธีรีฟลักซ์ด้วยเครื่องไมโครเวฟ (Microwave-assisted extraction) และทำการหาสภาวะที่เหมาะสมในการสกัด คือ ชนิดของตัวทำละลาย อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย กำลังไฟฟ้าที่ใช้ในการสกัด (วัตต์) และ เวลาในการสกัด (นาที) จากนั้นนำสกัดที่ได้ไปวิเคราะห์หาปริมาณสารสำคัญด้วยเทคนิค HPLC 4.5) การหาสภาวะที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยกระบวนการสกัดแบบรีฟลัก (reflux) โดยใช้เครื่องไมโครเวฟ            ในการหาสภาวะที่เหมาะสมในการสกัดสารสารคาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) ได้ทำการหาสภาวะที่เหมาะสมของตัวแปร ดังต่อไปนี้ -    ชนิดของตัวทำละลาย คือ เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) -    อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 g/mL -    กำลังไฟฟ้าที่ใช้ในการสกัด คือ 70, 210, 350, 490 และ 630 วัตต์ -    เวลาในการสกัด (นาที) คือ 10, 15, 20, 25 และ 30 นาที      โดยขั้นตอนในการสกัดแสดงดังภาพที่ 144 1.1) การหาสภาวะที่เหมาะสมของชนิดของตัวทำละลาย             นำตัวอย่างใบชาเมี่ยง 5.00xx กรัม มาสกัดโดยวิธีรีฟลักโดยใช้เครื่องไมโครเวฟ (Microwave-assisted extraction) ด้วยตัวทำละลายที่แตกต่างกัน คือ เมทานอล (MeOH), เอทานอล (EtOH), อะซีโตน (Acetone) และ น้ำ (H2O) ซึ่งใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย 1:30 (g/mL) โดยใช้กำลังไฟฟ้าในการสกัด คือ 280 วัตต์ เป็นเวลา 10 นาที ทำการกรองสารสกัดที่ได้ออกจากตัวอย่าง จากนั้นนำสารสกัดที่ได้ 2 mL มาเจือจางด้วยเอทานอลในขวดวัดปริมาตรขนาด 10 mL นำสารสกัดไปทำการกรองผ่านแผ่นเมมเบรนที่มีขนาดของรูพรุน 0.45 ไมโครเมตร ก่อนนำไปวิเคราะห์ด้วยเทคนิค HPLC แล้วนำผลการวิเคราะห์จากสารสกัดมาเทียบกับกราฟมาตรฐานเพื่อหาปริมาณสารสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชินที่มีอยู่ในตัวอย่างใบชาเมี่ยงเพื่อหาตัวทำละลายที่เหมาะสมที่สุดในการสกัดสารดังกล่าวเพื่อใช้ในการหาสภาวะต่อไป โดยขั้นตอนการสกัดแสดงดังภาพที่144 1.2) การหาสภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย                 เพื่อหาสภาวะที่เหมาะสมอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่ใช้ในการสกัดสารคาเฟอีน  อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชาเมี่ยง โดยการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่แตกต่างกัน คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 (g/mL) โดยใช้ตัวทำละลายเอทานอลทำการสกัดเป็นระยะเวลา 10 นาที และ ใช้กำลังไฟฟ้า คือ 280 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144                                                                                                                                                                            1.3) การหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัด              เพื่อหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชิน ในการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:25 (g/mL) โดยใช้เวลาในการสกัด คือ 10 นาที แต่ใช้กำลังไฟฟ้าในการสกัดแตกต่างกันออกไป คือ 70, 210, 350, 490 และ 630 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144 1.4) การหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด             เพื่อหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชา
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 1)

2.3) การทดสอบประสิทธิภาพของ Streptomycin 2.5 mg/ml ต่อการยับยั้งแบคทีเรียทดสอบ             นำ Streptomycin 2.5 mg/ml มาทดสอบฤทธิ์ในการยับยั้งแบคทีเรียทดสอบ 5 ชนิด พบว่า มีประสิทธิภาพในการสร้างวงใสยับยั้งแบคทีเรียทดสอบได้แตกต่างกันดังแสดงในตารางที่ 26 แผนภาพที่ 2 และภาพที่ 130 ตารางที่ 26  ประสิทธิภาพของ Streptomycin 2.5 mg/ml ในการยับยั้งแบคทีเรียทดสอบ
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 4)

5. ผลการวิเคราะห์ทางเคมี 5.1) ตัวทำละลายที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยง             หาตัวทำละลายที่เหมาะสมในการสกัดสารสำคัญ 3 ชนิด คือ คาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และอิพิคาเทชิน (EC) จากตัวอย่างใบชาเมี่ยงโดยใช้ตัวทำละลายที่แตกต่างกันทั้งหมด 4 ชนิด คือ  เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) โดยผลการทดลองแสดงดังภาพที่ 150
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ 1 )

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านศรีนาป่าน (SP) ตำบลเรือง อำเภอเมืองน่าน จังหวัดน่าน (ต่อ2)

การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

การทดสอบฤทธิ์ของสารสกัดใบชาเมี่ยงต่อการต้านเชื้อ Streptococcus mutans และ Lactobacillus spp. โดยวิธี disc diffusion (ต่อ)

การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านป่าเหมี้ยง (PM) ตำบลแจ้ซ้อน อำเภอเมืองปาน จังหวัดลำปาง (ต่อ1)

การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

การจำแนกปัจจัยแวดล้อมในทางนิเวศวิทยา

    การจำแนกปัจจัยแวดล้อมในทางนิเวศวิทยา มักแบ่งออกเป็นสองกลุ่มใหญ่ ๆ คือ ปัจจัยแวดล้อมที่เป็นสิ่งมีชีวิต (biotic factors) ซึ่งได้แก่ มนุษย์ สัตว์ และสิ่งมีชีวิตขนาดเล็กอื่น ๆ ที่มีอิทธิพลต่อสังคมพืช และปัจจัยแวดล้อมที่เป็นสิ่งไม่มีชีวิต (abiotic factors) ซึ่งเป็นองค์ประกอบสำคัญของถิ่นที่อยู่อาศัย นอกจากนั้นปัจจัยแวดล้อมที่ไม่มีชีวิตสามารถแบ่งย่อยได้อีกหลายประการดังนี้    1. ปัจจัยที่เกี่ยวกับดิน (edaphic factors) ดินเป็นเทหวัตถุที่เกิดขึ้นเองตามธรรมชาติปกคลุมผิวโลกอยู่บาง ๆ เกิดจากการแปรสภาพหรือผุสลายของหิน แร่ และอินทรีย์วัตถุ ผสมคลุกเคล้ากัน(คณาจารย์ภาควิชาปฐพีวิทยา, 2536) ดินเป็นแหล่งยึดเหนี่ยวของพืชส่วนใหญ่ ความอุดมสมบูรณ์ของดินจึงมักถือเป็นสิ่งวัดความอุดมสมบูรณ์ของสิ่งมีชีวิตในแหล่งต่าง ๆ ได้ นอกจากความอุดมสมบูรณ์ของดินแล้ว ความชื้นของดินก็มีความสำคัญอย่างยิ่งต่อพืชในเขตร้อนที่มีฤดูแล้งและฤดูฝนสลับกัน โดยเฉพาะอย่างยิ่งเมื่อฤดูแล้งเพิ่มขึ้นซึ่งจะเป็นจุดวิกฤติสำหรับการรอดตายของพืช (Sakurai et al., 1991) สอดคล้องกับรายงานของ Marod et al. (2002) ที่พบว่ากล้าไม้สำคัญในป่าผสมผลัดใบส่วนใหญ่มีอัตราการรอดตายลดต่ำลงมากเมื่อเข้าสู่ช่วงฤดูแล้งโดยทั่วไปพรรณไม้ส่วนใหญ่มีการพักตัวในฤดูแล้ง ซึ่งจะมีการผลัดใบและจัดสภาพทางสรีระวิทยาเพื่อการเจริญเติบโตเมื่อย่างเข้าสู่ฤดูฝน อย่างไรก็ตามการออกดอกออกผลของไม้ป่าหลายชนิดเกิดขึ้นในช่วงฤดูแล้งทั้งนี้เพื่อการโปรยเมล็ดในจังหวะที่พอเหมาะกับการมีความชื้นที่ผิวดินเพื่อการงอกและเจริญเติบโตของกล้าไม้(Marod et al., 2002) ปริมาณน้ำในดินยังเป็นปัจจัยสำคัญในการจำกัดรากพืชตามธรรมชาติ (Donahue et al., 1971) นอกจากนั้นความชื้นในดินยังเป็นตัวควบคุมชนิดและการกระจายของพันธุ์พืช (อมลรัตน์, 2544)และยังจำเป็นต่อกระบวนการต่าง ๆ ของพืช กล่าวคือ น้ำ เป็นวัตถุดิบในกระบวนการสังเคราะห์ด้วยแสงทำให้เซลล์เต่ง และเป็นตัวกลางในการเคลื่อนย้ายธาตุอาหาร อีกทั้งยังเป็นตัวควบคุมอุณหภูมิภายในเซลล์พืช(คณาจารย์ภาควิชาปฐพีวิทยา, 2536)    2. ปัจจัยที่เกี่ยวกับภูมิประเทศ (topographic factor) สภาพภูมิประเทศนับว่าเป็นปัจจัยสำคัญที่มีผลทางอ้อมต่อสังคมพืช โดยเฉพาะมีผลต่อความแปรผันของปัจจัยอื่น ๆ เช่น สภาพภูมิอากาศ ดิน และพลังงานที่ได้รับ การกระจายของสังคมพืชและพรรณพืชบางชนิดสัมพันธ์กับปัจจัยที่เกี่ยวข้องอยู่กับภูมิประเทศ ในขณะที่ อุทิศ (2542) ได้อธิบายลักษณะภูมิประเทศในรูปแบบต่าง ๆ ไว้ดังนี้         2.1 ระดับความสูงจากระดับน้ำทะเล (altitude) สภาพภูมิอากาศบางพื้นที่มีความผันแปรอย่างใกล้ชิดกับระดับความสูง ทั้งนี้เนื่องจากบรรยากาศในระดับต่ำของโลกคือในชั้น troposphere มีอุณหภูมิลดลงตามความสูง โดยในสภาพอากาศที่แห้งอุณหภูมิจะลดลงประมาณ 1 องศาเซลเซียส ต่อ 100 เมตร นอกจากนั้นอิทธิพลของความสูงที่มีผลต่อปัจจัยต่าง ๆ ที่เกี่ยวข้องกับการกระจายและการเจริญเติบโตของพรรณพืชโดยตรง แสดงให้เห็นทั้งในระดับกว้างและระดับแคบเฉพาะท้องถิ่น ในระดับกว้างแสดงให้เห็นได้ชัดจากการกระจายของสังคมพืชต่าง ๆ ภายในประเทศ โดยเฉพาะการเรียงตัวของป่าชนิดต่าง ๆ ในประเทศไทย ส่วนในระดับแคบแสดงให้เห็นการจากกระจายของสังคมพืชชนิดต่าง ๆ ตั้งแต่ระดับเชิงเขาจนถึงยอดเขาซึ่งมีความแตกต่างกัน (สคาร และ พงษ์ศักดิ์, 2546)            2.2 ความลาดชัน (slope) ความลาดเอียงของพื้นที่ มีผลโดยตรงต่อสังคมพืชน้อย แต่มีผลต่อปัจจัยอื่น ๆ ที่มีผลโดยตรงต่อการเจริญเติบโตและโอกาสของการปรากฏของไม้แต่ละชนิด และต่อโครงสร้างสังคมพืชส่วนรวม ระบบการระบายน้ำทั้งในผิวดินและส่วนลึกของดินขึ้นอยู่กับความลาดชันของพื้นที่ น้ำที่ไหลตามผิวดินมีความเร็วสูงเมื่อมีความลาดชันสูง ฉะนั้นโอกาสการซึมลงส่วนลึกของดินมีน้อย ในที่ลาดชันมากความชื้นค่อนข้างต่ำ ดินตื้นเนื่องจากการกัดชะของน้ำผิวดิน สังคมพืชคลุมดินจึงเป็นสังคมที่ต้องปรับตัวกับความแห้งแล้งได้ดี การจำแนกความลาดชันของพื้นที่ทางด้านป่าไม้นิยมแบ่งเป็นสี่ระดับคือ  1)  ระดับความลาดชันน้อย 5 – 10 องศา  2)  ความลาดชันปานกลาง 11 – 20 องศา  3)  ความลาดชันมาก 21 – 30 องศา และ  4)  ที่ลาดชันมาก ๆ 31 – 45 องศา (นิพนธ์, 2545)            2.3 ทิศด้านลาด (aspect) มีผลต่อการได้รับพลังงานจากดวงอาทิตย์ ปริมาณฝนที่ตกและลมที่พัดเอาความแห้งแล้งเข้ามาในพื้นที่ โดยปกติทิศด้านลาดที่หันไปทางทิศตะวันออกและตะวันตกย่อมได้รับพลังงานมากกว่าทางทิศเหนือและทิศใต้ แต่เนื่องจากแกนโลกเอียงฉะนั้นในทางซีกโลกเหนือด้านลาดที่หันไปทางทิศตะวันตกเฉียงใต้จะได้รับพลังงานสูงสุด ในขณะที่ด้านที่หันไปทางทิศตะวันออกเฉียงเหนือจะได้รับพลังงานน้อยที่สุด ในประเทศไทยทิศด้านลาดของภูเขามีผลอย่างยิ่งต่อการได้รับปริมาณน้ำฝน ซึ่งจะส่งผลต่อความอุดมสมบูรณ
การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

การศึกษาปริมาณสารประกอบฟีนอลลิกทั้งหมด ปริมาณสารฟลาโวนอยด์ทั้งหมด และกิจกรรมการต้านอนุมูลอิสระของสารสกัดชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือ ปริมาณสารฟีนอลิกทั้งหมด

    ปริมาณสารฟีนอลิกทั้งหมดของสารสกัดชาเมี่ยงจากบริเวณพื้นที่ภาคเหนือครอบคลุม 4  จังหวัด ได้แก่ จังหวัดแพร่ จังหวัดลำปาง จังหวัดเชียงใหม่ และจังหวัดน่านแสดงดังภาพที่ 4 พบว่า ปริมาณสารฟีนอลิกทั้งหมดของสารสกัดชาเมี่ยงจากจังหวัดแพร่สูงกว่าจังหวัดลำปาง จังหวัดเชียงใหม่ และจังหวัดน่าน โดยมีปริมาณของสารฟีนอลิกที่สกัดด้วยตัวทำละลายน้ำ เท่ากับ 2,492.35 2,166.42 1,965.39 และ 1,931.6 mg catechin acid equivalent/g extract ตามลำดับ และสารสกัดชาเมี่ยงมีค่าปริมาณสารฟีนอลิกที่สกัดด้วยตัวทำละลายเอทานอลเท่ากับ 2,009.26 1,917.90 1,550.00 และ 1,441.36 mg catechin equivalent/g extract ตามลำดับ Abdullah และคณะ (2013) พบว่าปริมาณกรดฟีนอลิกและฟลาโวนอยด์มีความสัมพันธ์โดยตรงกับฤทธิ์การต้านอนุมูลอิสระ การศึกษาปริมาณฟีนอลิกทั้งหมดและ ฤทธิ์การต้านอนุมูลอิสระของของชาเมี่ยงพบว่า สารประกอบฟีนอลิกในของชาเมี่ยงละลายได้เอทานอล 80% และแปรผันตรงต่อฤทธิ์ทางชีวภาพ ได้แก่ ฤทธิ์ การต้านอนุมูลอิสระ สอดคล้องกับงานวิจัยของ Sánchez-Salcedo และคณะ (2015) ที่รายงานว่าใบหม่อนสกัดด้วยเอทานอลแสดงฤทธิ์ทางชีวภาพดีกว่า การสกัดในตัวทำละลายน้ำ และบิวทานอล นอกจากนนี้จากบริเวณพื้นที่ภาคเหนือจังหวัดต่างๆมีปริมาณสารประกอบฟีนอลิกแตกต่างกันเนื่องจากชาเมี่ยงผ่านกระบวนการหมักที่ต่างกัน ทำให้มีองค์ประกอบทางเคมีที่แตกต่างกันไปส่งผลให้ชาแต่ละชนิดมีสีกลิ่น และรสชาติที่แตกต่างกัน ซึ่งต่างจากชาเขียวเป็นชาที่ไม่ผ่านการหมัก องค์ประกอบทางเคมีส่วนใหญ่จะคล้ายยอดใบชาสด โดยมีสารโพลิฟีนอลในกลุ่มคาเทชินอยู่ (catechins) มากที่สุด ชาอู่หลงมการหมักบางส่วน และชาดำมีการหมักอย่างสมบูรณ์การหมักทำให้ เอนไซม์พอลิฟีนอลออกซิเดส (polyphenol oxidase) เร่งปฏิกิริยาออกซิเดชันของคาเทชิน และเกิดปฏิกิริยาพอลิเมอร์ไรเซชันเป็นสารในกลุ่มทีเอฟลาวิน (theaflavins, TFs) และทีอะรูบิจิน (thearubigins, TRs) (Graham, 1992)
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

บ้านแม่ลัว (ML) ตำบลป่าแดง อำเภอเมืองแพร่ จังหวัดแพร่ (ต่อ2)

การวิจัยการใช้ประโยชน์และนิเวศวิทยาของชาเมี่ยงในพื้นที่ภาคเหนือ

องค์ประกอบทางเคมีของใบชาสด

    ชาที่ผลิตทางการค้าส่วนใหญ่มาจาก 2 สายพันธ์ุ คือ Camellia sinensis var. sinensis (ชาจีน, Chinese tea) และ Camellia sinensis var. assamica (ชาเมี่ยง หรือ ชาเมี่ยง, Assam tea) การเก็บใบชาสดที่มีคุณภาพเพื่อนำมาเข้ากระบวนการผลิตจะใช้แรงงานคนในการเก็บ โดยเลือกเก็บเฉพาะยอดชาที่ตูมและใบที่ต่ำจากยอดตูมลงมา 2-3 ใบ (1 ยอด 2-3 ใบ) โดยทั่วไป      ยอดใบชาสด ประกอบด้วย ความชื้นประมาณ 75-80 % โดยน้ำหนัก ส่วนที่เหลือ (20-25 %) เป็นของแข็งทั้งหมด      ของแข็งทั้งหมด ประกอบด้วย ส่วนที่ไม่ละลายน้ำ (insoluble matter) และส่วนที่ละลายน้ำ (soluble matter) องค์ประกอบทางเคมีของส่วนที่ละลายน้ำและไม่ละลายน้ำ ได้แก่     องค์ประกอบสำคัญในส่วนที่ละลายน้ำ คือ โพลิฟีนอล (polyphenols) มีอยู่ประมาณ 10-25 % โดยน้ำหนักแห้ง (Haslam, 2003) โพลิฟีนอล เป็นองค์ประกอบในใบชาสด ประกอบด้วย กลุ่มของสารประกอบ 6 กลุ่ม คือ flavanols, hydroxy-4-flavonols, anthocyanins, flavones, flavonols และ phenolic acids โดยฟลาวานอล (flavanols) เป็นองค์ประกอบที่พบมากที่สุด (60-80 % ของโพลิฟีนอล) เรียกว่า คาเทชิน (catechins) คาเทชินที่พบมากในชา ได้แก่ (-)-Epigallocatechin-3-gallate (EGCG), (-)-Epigallocatechin (EGC), (-)-Epicatechin-3-gallate (ECG) และ (-)-Epicatechin (EC) คาเทชินเหล่านี้มีอยู่ประมาณ 90 % ของ คาเทชินทั้งหมดและกลุ่มของคาเทชินที่พบในปริมาณน้อย ได้แก่ (+)-Gallocatechin (GC), (+)-Catechin (C) และคาเทชินอื่นๆ เช่น (-)-Gallocatechin gallate (GCG) และ (-)-Catechin gallate (CG) (Zhen et. al., 2002) หน้าที่หลักของสารประกอบฟลาโวนอยด์ในใบชา (Major functions of tea flavonoids)    1. Antioxidant activity      สารประกอบฟลาโวนอยด์ มีคุณสมบัติในการเป็นสารต้านออกซิเดชัน (antioxidant) โดยทำหน้าที่เป็นตัวขัดขวางหรือหยุดปฏิกิริยาต่อเนื่องของอนุมูลอิสระ (free radical chain terminator) ตัวจับออกซิเจน (oxygen scavenger) หรือเป็น chelating agent ของโลหะ เป็นต้น กลไกการทำงานของสารต้านออกซิเดชัน (Antioxidant)      จะทำหน้าที่เป็นสารรีดิวซ์ (reducing agent) ถ่ายเทไฮโดรเจนอะตอมออกจากโมเลกุลและให้กับออกซิเจน ทำให้ออกซิเจนไม่สามารถเกิดปฏิกิริยาได้ ถ้าเป็นในอาหารออกซิเจนจะก่อให้เกิดการเปลี่ยนแปลงลักษณะต่างๆของอาหาร เช่น สี กลิ่นและคุณค่าทางอาหาร เป็นต้น แต่ถ้าเป็นในร่างกายจะทำให้เกิดอนุมูลอิสระ (free radicals) ในร่างกาย ส่งผลให้เนื้อเยื่อหรือเซลล์ต่างๆ ในร่างกายถูกทำลาย ยิ่งปริมาณอนุมูลอิสระสูงมากเพียงใดก็ยิ่งเป็นตัวเร่งให้เกิดโรคภัยไข้เจ็บ รอยเหี่ยวย่นและความแก่ จากการศึกษาพบว่าระดับความเครียดจะส่งผลให้เกิดปฏิกิริยาของอนุมูลอิสระกับออกซิเจนสูงขึ้น นอกจากนั้นอายุยิ่งมากขึ้นการสะสมของอนุมูลอิสระก็จะสูงเพิ่มขึ้นด้วย ดังนั้นการรับประทานอาหารประเภทผักและผลไม้ที่มีสารต้านออกซิเดชัน (antioxidant) จะสามารถช่วยปกป้องจากการท้าลายของอนุมูลอิสระได้     จากการศึกษา พบว่าสารประกอบฟลาโวนอยด์ในใบชามีศักยภาพในการเป็นสารต้านออกซิเดชัน (antioxidant) และเป็นตัวจับอนุมูลอิสระ (free radical scavenging) ได้สูงกว่าวิตามินซี (vitamin C หรือ ascorbic acid) และวิตามินอี (vitamin E หรือ tocopherol) เพื่อป้องกันการเสื่อมของเซลล์จากอนุมูลอิสระ (Vison et. al.1995) การที่สารที่มีอยู่ในธรรมชาติสามารถแสดงสมบัติการเป็นสารต้านออกซิเดชันได้นั้นจะเกี่ยวข้องกับความสามารถในการให้ไฮโดรเจนอิออน (H+) ของหมู่ไฮดรอกซิล (OH) ในสารประกอบฟีนอล ความสามารถในการยับยั้งการเกิดปฏิกิริยาออกซิเดชันของสารต้านการเกิดออกซิเดชัน (antioxidant activity; AOA) ขึ้นอยู่กับตำแหน่งและจำนวนของหมู่ไฮดรอกซิล รวมทั้งโครงสร้างอื่นๆ ในโมเลกุลด้วย     สารประกอบฟีนอลที่มีหมู่แทนที่เป็นหมู่ให้อิเล็คตรอน (electron donating group) เช่น หมู่ไฮดรอกซิล (-OH) หมู่เมธอกซิล (-OCH3) หมู่เมธิล (-CH3) หมู่เอธิล (-C2H5) หรือ หมู่ t-butyl (-C(CH3)3) อยู่ที่ตำแหน่งออร์โท (ortho) หรือพารา (para) จะเพิ่ม ค่า AOA สารต้านออกซิเดชัน (antioxidants) กลุ่มที่พบมากที่สุดในธรรมชาติ ได้แก่ กลุ่มฟลาโวนอยด์ (flavonoids) ฟลาโวนอยด์ในพืชเป็นสารอินทรีย์ประเภทโพลีฟีนอล (polyphenol) มีโครงสร้างเป็นไดฟีนิลโพรเพน (diphenylpropane) มีการจัดเรียงตัวเป็นแบบ C6-C3-C6 ฟลาโวนอยด์ เป็นสารที่มีสมบัติในการยับยั้งการเกิดปฏิกิริยาออกซิเดชันที่มีในอาหารประเภทไขมันและไขมัน โครงสร้างของสารในกลุ่ม ฟลาโวนอยด์ที่เกี่ยวข้องกับการยับยั้งการเกิดปฏิกิริยาออก
การวิเคราะห์ห่วงโซ่อุปทานการผลิตชาเมี่ยงในภาคเหนือประเทศไทย

การศึกษาประสิทธิภาพของน้ำเมี่ยงในการยับยั้งเชื้อจุลินทรีย์ก่อโรค (ต่อ 3)

4.4) การหาปริมาณองค์ประกอบหลักทางเคมีของสารสกัดจากตัวอย่างใบชาเมี่ยงโดยใช้เทคนิคโคร                            มาโทกราฟีของเหลวสมรรถนะสูง (High performance liquid chromatography, HPLC)             งานวิจัยนี้มีวัตถุประสงค์เพื่อหาสภาวะที่เหมาะสมในการสกัดปริมาณสารสำคัญ คือ คาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยวิธีรีฟลักซ์ด้วยเครื่องไมโครเวฟ (Microwave-assisted extraction) และทำการหาสภาวะที่เหมาะสมในการสกัด คือ ชนิดของตัวทำละลาย อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย กำลังไฟฟ้าที่ใช้ในการสกัด (วัตต์) และ เวลาในการสกัด (นาที) จากนั้นนำสกัดที่ได้ไปวิเคราะห์หาปริมาณสารสำคัญด้วยเทคนิค HPLC 4.5) การหาสภาวะที่เหมาะสมในการสกัดสารคาเฟอีน (CAF) อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) จากใบชาเมี่ยงโดยกระบวนการสกัดแบบรีฟลัก (reflux) โดยใช้เครื่องไมโครเวฟ            ในการหาสภาวะที่เหมาะสมในการสกัดสารสารคาเฟอีน (CAF), อิพิแกลโลคาเทชินแกลเลต (EGCG) และ อิพิคาเทชิน (EC) ได้ทำการหาสภาวะที่เหมาะสมของตัวแปร ดังต่อไปนี้ -    ชนิดของตัวทำละลาย คือ เมทานอล (MeOH) เอทานอล (EtOH) อะซีโตน (Acetone) และ น้ำ (H2O) -    อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 g/mL -    กำลังไฟฟ้าที่ใช้ในการสกัด คือ 70, 210, 350, 490 และ 630 วัตต์ -    เวลาในการสกัด (นาที) คือ 10, 15, 20, 25 และ 30 นาที      โดยขั้นตอนในการสกัดแสดงดังภาพที่ 144 1.1) การหาสภาวะที่เหมาะสมของชนิดของตัวทำละลาย             นำตัวอย่างใบชาเมี่ยง 5.00xx กรัม มาสกัดโดยวิธีรีฟลักโดยใช้เครื่องไมโครเวฟ (Microwave-assisted extraction) ด้วยตัวทำละลายที่แตกต่างกัน คือ เมทานอล (MeOH), เอทานอล (EtOH), อะซีโตน (Acetone) และ น้ำ (H2O) ซึ่งใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย 1:30 (g/mL) โดยใช้กำลังไฟฟ้าในการสกัด คือ 280 วัตต์ เป็นเวลา 10 นาที ทำการกรองสารสกัดที่ได้ออกจากตัวอย่าง จากนั้นนำสารสกัดที่ได้ 2 mL มาเจือจางด้วยเอทานอลในขวดวัดปริมาตรขนาด 10 mL นำสารสกัดไปทำการกรองผ่านแผ่นเมมเบรนที่มีขนาดของรูพรุน 0.45 ไมโครเมตร ก่อนนำไปวิเคราะห์ด้วยเทคนิค HPLC แล้วนำผลการวิเคราะห์จากสารสกัดมาเทียบกับกราฟมาตรฐานเพื่อหาปริมาณสารสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลตและอิพิคาเทชินที่มีอยู่ในตัวอย่างใบชาเมี่ยงเพื่อหาตัวทำละลายที่เหมาะสมที่สุดในการสกัดสารดังกล่าวเพื่อใช้ในการหาสภาวะต่อไป โดยขั้นตอนการสกัดแสดงดังภาพที่144 1.2) การหาสภาวะที่เหมาะสมของอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลาย                 เพื่อหาสภาวะที่เหมาะสมอัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่ใช้ในการสกัดสารคาเฟอีน  อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชาเมี่ยง โดยการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายที่แตกต่างกัน คือ 1:15, 1:20, 1:25, 1:30 และ 1:35 (g/mL) โดยใช้ตัวทำละลายเอทานอลทำการสกัดเป็นระยะเวลา 10 นาที และ ใช้กำลังไฟฟ้า คือ 280 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144                                                                                                                                                                            1.3) การหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัด              เพื่อหาสภาวะที่เหมาะสมของกำลังไฟฟ้าที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชิน ในการสกัดจะใช้อัตราส่วนตัวอย่างใบชาเมี่ยงต่อตัวทำละลายเอทานอล คือ 1:25 (g/mL) โดยใช้เวลาในการสกัด คือ 10 นาที แต่ใช้กำลังไฟฟ้าในการสกัดแตกต่างกันออกไป คือ 70, 210, 350, 490 และ 630 วัตต์ โดยวิธีการสกัดแสดงดังภาพที่ 144 1.4) การหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัด             เพื่อหาสภาวะที่เหมาะสมของเวลาที่ใช้ในการสกัดสารคาเฟอีน อิพิแกลโลคาเทชินแกลเลต และ อิพิคาเทชินในใบชา